Nitric oxide-induced regulation of renal organic cation transport after renal ischemia-reperfusion injury.

نویسندگان

  • R Schneider
  • M Meusel
  • B Betz
  • M Kersten
  • K Möller-Ehrlich
  • C Wanner
  • H Koepsell
  • C Sauvant
چکیده

Renal organic cation transporters are downregulated by nitric oxide (NO) in rat endotoxemia. NO generated by inducible NO synthase (iNOS) is substantially increased in the renal cortex after renal ischemia-reperfusion (I/R) injury. Therefore, we investigated the effects of iNOS-specific NO inhibition on the expression of the organic cation transporters rOct1 and rOct2 (Slc22a1 and Slc22a2, respectively) after I/R injury both in vivo and in vitro. In vivo, N(6)-(1-iminoethyl)-L-lysine (L-NIL) completely inhibited NO generation after I/R injury. Moreover, L-NIL abolished the ischemia-induced downregulation of rOct1 and rOct2 as determined by qPCR and Western blotting. Functional evidence was obtained by measuring the fractional excretion (FE) of the endogenous organic cation serotonin. Concordant with the expression of the rate-limiting organic cation transporter, the FE of serotonin decreased after I/R injury and was totally abolished by L-NIL. In vitro, ischemia downregulated both rOct1 and rOct2, which were also abolished by L-NIL; the same was true for the uptake of the organic cation MPP. We showed that renal I/R injury downregulates rOct1 and rOct2, which is most probably mediated via NO. In principle, this may be an autocrine effect of proximal tubular epithelial cells. We conclude that rOct1, or rOct1 and rOct2 limit the rate of the renal excretion of serotonin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of nitric oxide in the protective action of remote ischemic per-conditioning against ischemia/reperfusion-induced acute renal failure in rat

Objective(s): We investigated the role of nitric oxide (NO) in the protective effects of remote ischemic per-conditioning (rIPerC) on renal ischemia/reperfusion (I/R) injury in male rats. Materials and Methods: I/R treatment consisted of 45 min bilateral renal artery ischemia and 24 hr reperfusion interval. rIPerC was performed using four cycles of 2 min occlusions of the left femoral artery an...

متن کامل

بررسی اثر 5- آمینوسالیسیلیک اسید(5-ASA) در آسیب ناشی از ایسکمی و رپرفیوژن در کلیه موش صحراییThe Assessment of 5-Aminosalicylic Acid(5-ASA) Effect on Ischemia-Reperfusion Injury of the Kidney in Rats

    Background & Aim: Occlusion of organs artery results in ischemia and the opening of occluded artery leads to tissue lesion identified as reperfusion injury(RI). Oxygen-derived free radicals seem to be involved in the reperfusion injury. In this experimental study the effects of 5-aminosalicylic acid(5-ASA), a prescribed drug for ulcerative colitis, was assessed. 5-ASA is a potent scavenger ...

متن کامل

Amelioration of rat renal ischemia/reperfusion injury by L-Nil

Introduction: Ischemia/reperfusion (IR) injury involves a complex interrelated sequence of events. High levels of nitric oxide (NO) are generated with inducible form of nitric oxide synthase (iNOS) leading to the renal IR injury and glutathione (GSH) depletion. The present study was designed to investigate the effect of L-Nil (N6- (1-Iminoethyl)-L- lysine.hydrochloride), a selective inhibito...

متن کامل

The role of L-arginine and aerobic exercise in experimental renal ischemia reperfusion injury in male and female rats

Introduction: Renal ischemia/reperfusion (I/R) injury due to reactive oxygen species (ROS) formation is the main cause of acute kidney damage. Nitric oxide (NO) biosynthesis and oxidative stress are closely related to the pathogenesis of renal I/R injury. This study was undertaken to determine the effects of L-arginine (L-arg) as NO donor and aerobic exercise (EX) and also the combination of L-...

متن کامل

Renoprotective effects of GABA on ischemia/reperfusion- induced renal injury in hyperglycemic male and female rats

Introduction: Acute kidney injury (AKI) has been known as a complex clinical complication in diabetic patients. The main cause of AKI is ischemia/reperfusion injury (IRI). This study was designed to investigate the protective effects of GABA on renal IRI in hyperglycemic female and male rats. Methods: Sixty STZ induced diabetic male and female Wistar rats were categorized in 10 groups (5 fem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 301 5  شماره 

صفحات  -

تاریخ انتشار 2011